

DESCRIPTION OF METHODOLOGIES AND CONCEPTS FOR THE TECHNICAL IMPLEMENTATION OF FEATURES ON IMPROVED HANDLING AND USE OF EPC DATA IN SELECTED COUNTRIES -ENHANCED RECOMMENDATIONS

JUNE 2022



THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 845958.

.

.



eXTENDing the energy performance assessment and certification schemes via a mOdular approach

## D4.4 Description of methodologies and concepts for the technical implementation of each feature regarding improved handling and use of EPC data in selected implementing countries

June 2022



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 845958.

| Project Acronym     | X-tendo                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------|
| Project Name        | eXTENDing the energy performance assessment and certification schemes via a mOdular approach |
| Project Coordinator | Lukas Kranzl und Iná Maia – TU Wien                                                          |
|                     |                                                                                              |
| Project Duration    | 2019 - 2022                                                                                  |
| Website             | https://x-tendo.eu/                                                                          |

| Deliverable No.               | D4.4                                                                                                                                                                      |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissemination Level           | Public                                                                                                                                                                    |
| Work Package                  | WP4                                                                                                                                                                       |
| Lead beneficiary              | Technische Universität Wien                                                                                                                                               |
| Contributing beneficiary(ies) | BPIE, ADENE, DEA, TREA, ENEA, CRES                                                                                                                                        |
| Author(s)                     | Iná Maia and Lukas Kranzl (TUW), Zsolt Toth and Jonathan Volt (BPIE),<br>Cláudia Monteiro and Rui Fragoso (ADENE)                                                         |
| Co-author(s)                  | Kalle Virkus (TREA), George Koras, Lena Lampro and Elpida Polychroni<br>(CRES)                                                                                            |
| Reviewed by                   | Casper Thielsen (DEA), Peter Mellwig (ifeu), Mieke Duerinck (VEA), Chris<br>Hughes (SEAI), Nuno Baptista (ADENE), Silvia Urra (TECNALIA) and<br>Benigna Boza-Kiss (IIASA) |
| Date                          | June, 2022                                                                                                                                                                |
| File Name                     | D4.4_final                                                                                                                                                                |

#### Legal Notice

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither EASME nor the European Commission is responsible for any use that may be made of the information contained therein

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. The quotation of those designations in whatever way does not imply the conclusion that the use of those designations is legal without the consent of the owner of the trademark.

Please note these chapters are extracted from the full report, available at this link:

https://x-tendo.eu/wp-content/uploads/2022/08/X-tendo-D4.4\_v4\_rev07\_RDA\_withcover.pdf

## TABLE OF CONTENT

| TABLE OF CONTENT                                                              | 4       |
|-------------------------------------------------------------------------------|---------|
| EXECUTIVE SUMMARY                                                             | 5       |
| Introduction                                                                  | 6       |
| 1 Enhanced recommendations                                                    | 9       |
| 1.1 Feature introduction                                                      | 9       |
| 1.2 Proposed methodology                                                      |         |
| Measure-by-measure recommendations                                            |         |
| Recommendation calculation methods                                            | 14      |
| Whole building indicators derived from regional or national long-term strateg | gies 17 |
| 1.3 Countries' implementation                                                 |         |
| REFERENCES                                                                    |         |
| ANNEX I – Pre fabricated recommendations                                      |         |
| ANNEX II – Rules first threshold check (per country)                          |         |
| Greece                                                                        |         |
| Italy                                                                         |         |
| ANNEX III – Cluster parameters (per country)                                  |         |
| Greece                                                                        |         |
| Italy                                                                         |         |
| ANNEX IV – Parameters second threshold check (per country)                    |         |
| Greece                                                                        |         |
| Italy                                                                         |         |

## **EXECUTIVE SUMMARY**

The X-tendo project is developing a framework of ten "next-generation Energy Performance Certificates (EPC) features", aiming to improve compliance, usability and reliability of the EPC. These features are divided in two categories: 1) innovative indicators and 2) innovative data handling practices.

This report describes the methodologies and concepts for the technical implementation of each innovative data handling feature - **EPC databases, building logbook, enhanced recommendations, financing options and one-stop-shops**. It also presents in detail the country-specific implementation of the developed methodologies in the X-tendo target countries.

The present report builds on past projects activities and provides input to upcoming technical implementation tools and guidelines (excel spread and programming code), as well as the testing of the methodologies in each implementing country. For additional information and further background, previous project reports are listed below:

- 1. Introductory reports of the 10 innovative EPC features (<u>Deliverable 2.3</u>)
- 2. Description of implementing partners' user needs and detailed technical specifications regarding features on handling and use of EPC data (<u>Deliverable 4.2</u>)
- 3. Summary of implementing partners' user needs and detailed technical specifications (<u>Deliverable 4.3</u>)
- 4. Tools, concepts and guidelines for features: building logbook, enhanced recommendations and EPC databases (<u>Toolbox area per each feature</u>)
- 5. Recommendations and replicability potential (<u>Toolbox area per each feature</u>)

The described methodologies and concepts will be implemented and tested during the forthcoming stages of the project. Together with the general feature concept, also country-specific aspects of the methodology are presented. The complete set of materials will be accessible online via the X-tendo Toolbox (<u>https://x-tendo.eu/toolbox/</u>).

This document is the revised version of the report completed in April 2021.

## **INTRODUCTION**

This report describes the methodologies and concepts for the technical implementation of each innovative EPC data handling feature - EPC databases, building logbook, enhanced recommendations, financing options and one-stop-shops.

Energy performance certificates (EPCs) are an important instrument across Europe to assess and register information about building's energy performance. They have the potential to be used as more than just as a energy label, as they can provide market participants with relevant information to assess, benchmark and plan the improvement of the building's energy performance. Besides the information included in each document, data handling and the effective use of the information for wider building improvement and decision-making purposes are becoming more and more important. The Renovation Wave Communication published by the European Commission in October 2020 reinforced the importance of the existing EPC frameworks to improve the data gathering, storage, data mining, data analysis and overall quality of EPCs. Furthermore, the Commissions' proposal to recast the Energy Performance of Buildings Directive 2018/844 (EPBD) introduces comprehensive improvements, such as rescaling, design, additional indicators, and the requirement for the certificates to be available in digital format.

The, especially in regard to the last point, the five X-tendo features explore different functionalities on how to handle with digital EPC data. The present document describes in detail the methodologies and concepts of each feature: EPC databases (Chapter 2), building logbook (Chapter 3), enhanced recommendations (Chapter 4), Financing options (Chapter 5) and one-stop-shops (Chapter 6). For the features EPC databases, building logbook and enhanced recommendation, the described methodologies will be implemented as tools (project report 4.5 "Tools, concepts and guidelines for features: building logbook, enhanced recommendations and EPC databases").

D4.4\_Description of methodologies and concepts regarding improved X-tendo handling and use of EPC data

| ment and implementation of routines<br>dentify outliers and to validate EPC data                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |
| ion of core logbook ingredients: (1) data<br>e, (2) functionalities and benefits, (3) and<br>vernance<br>l for a common X-tendo data model<br>n available EPC data      |
|                                                                                                                                                                         |
| al for automatically-generated building-<br>recommendations (including economic<br>n-energy benefits assessment<br>al for linking to Long-term Renovation<br>ies (LTRS) |
|                                                                                                                                                                         |
| cation of information sources on public<br>al schemes and closer integration of<br>ng with EPCs                                                                         |
|                                                                                                                                                                         |
| cation of information sources on public<br>Il schemes and closer integration of<br>ng with EPCs                                                                         |
|                                                                                                                                                                         |

## Figure 1: X-tendo methodology for features EPC databases, building logbook, enhanced recommendations, financing options and one-stop-shops

The methodology will be tested in different X-tendo implementing countries, as shown in the Table 1 below. The expert partners were responsible to share their national experience, especially relevant for setting up the final methodology.

D4.4\_Description of methodologies and concepts regarding improved X-tendo

|                    | EPC databases | Building<br>Logbook     | Enhanced<br>Recommendations | Financing<br>Options | One Stop Shops |
|--------------------|---------------|-------------------------|-----------------------------|----------------------|----------------|
| Feature lead       | TU Wien       | BPIE                    | TU Wien                     | ADENE                | ADENE          |
| Austria, EAST      |               |                         | Expert                      |                      |                |
| Denmark, DEA       | Implementer   |                         | Implementer                 | Implementer          | Implementer    |
| Estonia, TREA      |               | Implementer             |                             |                      |                |
| Greece, CRES       | Implementer   | Implementer             |                             |                      |                |
| Italy, ENEA        | Implementer   |                         |                             |                      |                |
| Poland, NAPE       |               |                         | Implementer                 | Expert               |                |
| Portugal,<br>ADENE |               | Expert /<br>Implementer |                             | Implementer          | Expert         |
| Romania,<br>AAECR  |               |                         |                             | Implementer          | Implementer    |
| UK, EST            | Expert        |                         | Implementer                 |                      | Implementer    |

Table 1: Implementing and expert countries per feature

## **1 ENHANCED RECOMMENDATIONS**

#### 1.1 Feature introduction

Today in many EU-countries, the EPC recommendations are not sufficiently informative. The information which is really relevant for building owners and users differs by EPC purpose – which are mostly either for real estate transactions or for renovation (some for new buildings). Thus, the question what an appropriate and accurate recommendation is depends on the main EPC objective. While for real estate transactions reliable, usable and indicative recommendations are sufficient, for the planning of deep renovations detailed and tailored recommendations are required. In the cases of deep renovation, recommendations are important for owners undertaking and implementing them. The accuracy and detail are the key differences that consequently reflect on the amount of information needed and adequate tool to generate the targeted recommendation. These aspects have a direct influence on the EPC prices, and represent in fact a trade-off between accuracy and higher EPC prices against less accuracy and lower prices. The X-tendo methodology proposes a method for an automated provision of EPC recommendations, mainly for real estate transaction. The main objectives of the methodology are to demonstrate how to provide automatically enhanced EPC recommendations, to demonstrate how costs can be included in the EPC recommendations and to demonstrate how the EPC recommendations can be linked to national long-term and climate strategies for the building stock.

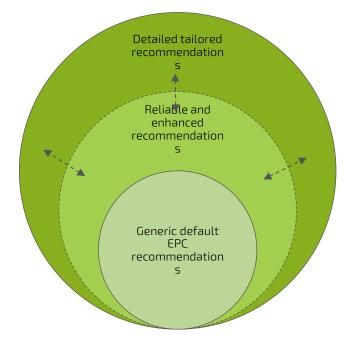



Figure 2: The boundaries of EPC recommendations

## 1.2 Proposed methodology

The main objective of the X-tendo methodology is to support public authorities in increasing the usefulness and accuracy of EPC recommendations. In the context of the X-tendo project, this feature will be tested in the following countries of Denmark, Poland and Scotland.

The proposed method is built on three pillars:

- Enhancing actual recommendations, by automatically-generated additional building-specific recommendations: in addition to techno-economic considerations, this will comprise a discussion of how co-benefits resulting from these recommended measures can be included in the EPC recommendations.
- 2) Showing how the costs of recommended measures can be included in the EPC provision process, enabling calculation of the cost-effectiveness of the recommended measures.
- 3) Setting targeted values for recommendations in order to guarantee that they are in line with national long-term and climate strategies for the building stock. In addition to the calculation methods, guidelines will also be provided on how to perform the calculations and assess the values, as a support handbook for energy auditors.

Figure 3 below presents the overview of the method. In general, this method can be divided in three parts: providing measure-by-measure recommendations, defining the whole building impact of all recommendations and providing an economic assessment. The third part – the economic assessment – is optional, as it will depend on the availability and link to external databases, as cost databases.

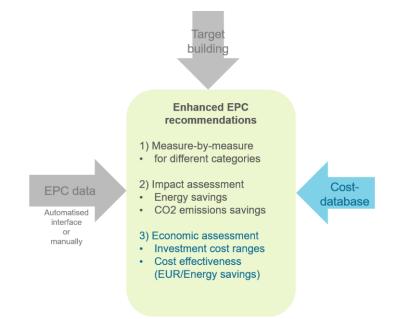



Figure 3: Overview of the Enhanced EPC recommendations

The recommendations will be delivered for different categories: measures for improving the building envelope (for example: insulation thickness), technical building systems (for example: dimension size of heating system) and integration of renewable energy systems (for example: recommended area of PV systems to be installed). The impact of the provided recommendations will be assessed by using indicators as energy savings and CO2 emission reductions. The economic assessment is based on the results generated in the previous steps. Therefore, a link with external databases (i.e. measures' costs and energy prices) is necessary, and a database structure will be proposed. The impact of the provided recommendations will be assessed by using indicators as cost-effectiveness (EUR/energy savings) and energy cost savings.

Another aspect covered by the methodology refers to the definition of the target building. The target building can be set based on: 1) actual building standards regulations or other standard (passive house, nearly zero energy building etc.), or 2) energy auditors expertise or, 3) according to national long-term renovation strategies or other climate plans.

In many countries, building codes for existing buildings are not as restrictive as for new buildings. This means that the energy performance achieved after the renovation might not be sufficient to achieve decarbonisation targets. In the short term, if a high number of buildings perform less efficient renovations, the decarbonisation target (e.g. set for the year 2025) can still be met. However, in the long term – and given the need to move towards a fully decarbonised building stock – shallow-level renovations will not provide enough savings and carbon reductions to meet the target.

This kind of trade-off analysis can be realised by building stock models, which study different pathways to achieve a set goal. For this purpose, the use of building stock model analysis is proposed as a relevant instrument to help set ambitious whole-building renovation target values for several specific building types. This should take into account policies and specifications, for example, long-term renovation strategies or decarbonisation scenarios and targets. And, the ambitious whole-indicator could also enhance EPC recommendations, by ensuring that they are not only in line with energy efficiency standards, but also with long-term low-carbon emissions targets and national policies.

#### Measure-by-measure recommendations

Table 5 (below) presents the measure-by-measure recommendations and their specifications, including:

- 1. List of measure-by-measure enhanced recommendations, grouped according to different categories. This list of proposed recommendations can be further extended by the EU-Member state (categories and types of recommendation);
- 2. Definition of the parameter (and respective units) which should be used to provide the recommendation;

- 3. Definition of the input data (ideally is should be provided by the EPC) to provide the recommendation;
- 4. Definition of the criteria to assess, if the recommendation is necessary or not
- 5. Definition of the calculation procedures for each recommendation (also presented in chapter 0).

For each enhanced recommendation also the co-benefits (one or more) are qualitatively indicated, as listed below. Also, pre-fabricated texts (Annex I) should help the assessor to further explain about additional benefits provided, when implementing the enhanced recommendations:

- Generation of energy savings
- Prevent or reduce pathologies (for example, in energy poor households)
- Easy implementation
- Increase of thermal comfort
- Increase of indoor air quality
- Link to renewable energy



## eXTENDing the energy performance assessment and certification schemes via a mOdular approach

| Categories and types of recommendations          |                                                               | Input data                                                | Criteria                             | Calculation methods                                                                 |                                                                                                                                                                       |                                                                              |
|--------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Recommendation<br>category                       | Enhanced recommendation                                       | Parameter to specify the<br>recommendation                | Parameter unit                       | Necessary EPC input data                                                            | Criteria for deciding if recommendation is<br>necessary                                                                                                               | Method to calculate the recommendation                                       |
|                                                  | top floor ceiling or roof insulation                          | thickness of the insulation                               | mm                                   | building element construction (or top floor ceiling) and U-value                    | current U-value should be lower than the target value                                                                                                                 | thickness calculation (based on the U-value)<br>and cost-optimal calculation |
|                                                  | external wall thermal insulation                              | thickness of the insulation                               | mm                                   | building element construction (external wall)<br>and U-value                        | current U-value should be lower than the target value                                                                                                                 | thickness calculation (based on the U-value)<br>and cost-optimal calculation |
| thermal quality of the                           | window and door replacement                                   | thermal transmittance                                     | U-value                              | U-value window (including frames) and door                                          | current U-value should be lower than the target value                                                                                                                 | comparision between "target value" and<br>"input data value"                 |
| building envelope                                | basement ceiling or floor insulation                          | thickness of the insulation                               | mm                                   | building element construction (basement ceiling or floor insulation) and U-value    | current U-value should be lower than the target value                                                                                                                 | thickness calculation (based on the U-value)<br>and cost-optimal calculation |
|                                                  | air tightness                                                 | n50 - air tightness coefficient<br>and ventilation system | h-1                                  | existing mechanical ventilation system and<br>n50                                   | if mechanical ventilation exist, than n50<br>>= 1.5 is considered to be high<br>if mechanical ventilation does not<br>exist,than n50 >= 3 is considered to be<br>high | comparision of the current value according<br>to the ranges                  |
|                                                  | insulation of heating system pipelines                        | thickness of the insulation                               | mm                                   | U-value pipeline                                                                    | current U-value should be lower than the target value                                                                                                                 | comparision between "target value" and<br>"input data value"                 |
|                                                  | heating system efficiency standard                            | heating system system efficiency                          | -                                    | heating system efficiency                                                           | current U-value should be lower than the target value                                                                                                                 | comparision between "target value" and<br>"input data value"                 |
| heating technology and<br>dhw systems            | heat supply system's nominal power                            | capacity of heating system                                | kW                                   | building envelope quality and HDD                                                   | suggested if the envelope measures are not compliant                                                                                                                  | calculation of targeted heat load                                            |
|                                                  | thermostatic valves installation                              | exisiting thermostatics                                   | thermostatic<br>installation -yes/no | existing room thermostatics                                                         | if room thermostatics are available or not                                                                                                                            | verification if thermostatic are installed or not                            |
| ventilation technology<br>systems                | installation mechanical ventilation for heat recovery systems | efficiency of HR (heat recovery)                          | ideal efficiency range               | existing mechanical ventilation and heat<br>recovery rate                           | current U-value should be lower than the target value                                                                                                                 | comparision between "target value" and<br>"input data value"                 |
|                                                  | install PV system                                             | kWpeak                                                    | kWh                                  | available roof area; PV cells specifications;<br>weather data about solar radiation | if more than 10m <sup>2</sup> area is available                                                                                                                       | PV energy production calculation (according to DIN18599)                     |
| renewable energy<br>sources and CO2<br>emissions | PV system coverage                                            | electricity consumption                                   | %                                    | electric energy consumption                                                         | potential for PV production exist                                                                                                                                     | potential PV production / electric energy<br>consumption                     |
|                                                  | connect to district heating grid                              | Conntected to district heating                            | connect to grid -<br>yes/no          | heat generation system (actual)                                                     | if the building is connected or not to<br>disctrict heating                                                                                                           | according to available database                                              |

Table 2: Specification of measure-by-measure recommendations



#### **Recommendation calculation methods**

The next sections present the calculation procedures used to calculate the recommendations (according to Table 2).

#### Insulation thickness based on the targeted U-value (method 1)

The method 1 is based on the U-value calculation. Considering that a building element can be construction by one or more material layers, and each material has a thickness and thermal conductivity, that deliver the U-value. The calculation of the new insulation thickness consist basically of the reverted U-value calculation, based on targeted value. This equation can be applicable to the building elements roof (or upper ceiling), façade (or external wall) and floor (or upper basement ceiling). The Rsi and Rse-values vary according

d\_build elem =  $\lambda_{build \ element \ insul \ *} \left(\frac{1}{U-value_{\ build \ element}} - Rsi_{build \ element} - Rsi_{build \ element} - Rse_{build \ element} - \sum_{i=1}^{n} \frac{dn}{\lambda n}\right)$  Equation 1

to the building element position:

#### n, external wall layer

| d_build elem = thickness of the new building element insulation                        | [m]     |
|----------------------------------------------------------------------------------------|---------|
| $\lambda_{build\ element\ insul}$ = thermal conductivity of the new insulation layer   | [W/mK]  |
| U - value <sub>build element</sub> = target U-value of the building element<br>[W/m²K] |         |
| Rsi <sub>build element</sub> = inner coefficient of thermal resistance<br>[m²K/W]      |         |
| $Rse_{build\ element}$ = external coefficient of thermal resistance                    | [m²K/W] |
| n = number of the building element layer                                               |         |
| d = insulation thickness of the layer n                                                | [m]     |

#### Insulation thickness based on cost-optimal calculation (method 2)

The method 2 follows the Austrian Standard ÖNORM B 8110-4 ("ÖNORM B 8110-4:2011 07 15 - Lesesaal - Austrian Standards," 2011) to calculate cost optimal insulation thickness. This equation can be applicable to the building elements roof (or upper ceiling), façade (or

d\_build elem\_opt = 
$$\lambda_{build \ elem \ insul } * \left[ \sqrt{\frac{HDD * 24 * EPneeds * fret}{\lambda_{build \ elem \ insul }^{*IVP}}} - (Rsi + Rse + Rt, r) \right]$$



external wall) and floor (or upper basement ceiling). The Rsi and Rse-values vary according to the building element position:

#### **Equation 2**

| $EPneeds = \frac{EPuse}{\eta}]$                                        | Equation 3             |
|------------------------------------------------------------------------|------------------------|
| d_build elem_opt = cost optimised insulation thickness of the new insu | lation layer [m]       |
| HDD = heating degree day                                               | [Kd]                   |
| EP needs = price energy needs<br>[Euro/kWh]                            |                        |
| fret = rate of return, default value or entered by the user            | [-]                    |
| IVP = insulation volume price                                          | [Euro/m <sup>3</sup> ] |
| EP use = price energy use                                              | [Euro/kWh]             |
| $\eta$ = annual efficiency                                             | [-]                    |
| Rt , $r$ = sum of the thermal resistance value of all current layers   | [m <sup>2</sup> K/W]   |
| $Rsi_{build\ element}$ = inner coefficient of thermal resistance       | [m²K/W]                |
| $Rse_{build\ element}$ = external coefficient of thermal resistance    | [m²K/W]                |

#### Heat load

This method is based on the Norm DIN 18599 (DIN V 18599-2, 2011) to calculate the maximal heating system capacity.

 $\Phi_{\text{heat}} = \begin{bmatrix} \sum_{i=1}^{n} (Ui * Ai) + \Delta Utb * \sum_{i=1}^{n} (Ai) \end{bmatrix} * \mathsf{Fx} * \mathsf{HDD}/\mathsf{24}/\mathsf{1000} \quad \text{Equation 4}$ 

i = building element (roof (or upper ceiling), façade (or external wall), floor (or upper basement ceiling), window and door) (opaque and transparent building element)

| $\Phi$ heat = maximal heating system capacity | [kW]              |
|-----------------------------------------------|-------------------|
| Ui = U-value of the building element          | [W/m²K]           |
| Ai = surface area of the building element     | [m <sup>2</sup> ] |

D4.4\_Description of methodologies and concepts regarding improved X-tendo handling and use of EPC data

| $\varDelta Utb$ =default building thermal bridge <sup>1</sup> | [W/m²K] |
|---------------------------------------------------------------|---------|
| HDD = heating degree day (annual)                             | [Kd]    |
| Fx = temperature correction factor <sup>2</sup>               | [-]     |

#### **PV production**

This method is based on the Norm DIN 18599 (DIN V 18599-9, 2011) to calculate the maximal solar energy production with a PV system.

| $en_{PV} = rac{I_{sol} * cpk * fperf}{refI}$             | Equation 5              |
|-----------------------------------------------------------|-------------------------|
| $en_{PV}$ = energy production from PV system              | [kWh/yr]                |
| <i>I</i> sol = solar irradiation in the PV system         | [kWh/m <sup>2</sup> yr] |
| cpk= peak capacity of the PV system                       | [kW]                    |
| <i>fperf</i> = system performance factor                  | [-]                     |
| refI = reference solar irradiation intensity <sup>3</sup> | [kW/m <sup>2</sup> ]    |
|                                                           |                         |

| cpk = specpK * A                                 | Equation 6        |
|--------------------------------------------------|-------------------|
| cpk= peak capacity of the PV system              | [kW]              |
| specpK = specific peak capacity of the PV system | [kW/m²]           |
| A = area of the PV system                        | [m <sup>2</sup> ] |

<sup>&</sup>lt;sup>1</sup> Suggested default value =  $0,1 \text{ W/m}^2\text{K}$ 

 $<sup>^2</sup>$  Suggested default value = 1 (for building elements outside ground) and 0,5 (for all other building elements)

<sup>&</sup>lt;sup>3</sup> Suggested default value =  $1 kWh/m^2$ 

#### PV consumption percentage

The PV consumption percentage defines the percentage of the total electric energy consumption that can be covered by an on-site PV production system:

| $PV\_coverage = \frac{el\_en\_consumption}{en\_prod_{PV}}$   | Equation 7 |
|--------------------------------------------------------------|------------|
| <i>PV_coverage</i> = PV consumption coverage percentage      | [%]        |
| <i>el_en_consumption</i> = total electric energy consumption | [kWh/yr]   |
| $en_prod_{PV}$ = energy production from PV system            | [kWh/yr]   |

#### Whole building indicators derived from regional or national long-term strategies

As introduced in the chapter 1.2, regional or national long-term strategies, developed e.g. by building stock models can be a helpful instrument to define targets for whole building indicators. This type of models allow the quantification of future building stocks' development in form of different scenarios, including scenarios achieving a certain climate or energy target. According to a foreseeing pathway, the model can provide various assessments as for example the final or useful energy demand, the share of new buildings, the renovation rates and achieved energy efficiency standards and the demolition of existing buildings. The pathways can represent climate and political targets, market penetration of technologies, renovation rates trends, etc.

The EU has set as an overall target to fully decarbonise their building stocks by 2050 the latest. To achieve this target, Member States should specify their long-term renovation strategies and decarbonisation targets. In this context, a building stock modelling can help to project and estimate how fast the specified strategies could be achieved. More specifically, one of the model outputs can be ambitious targets for whole building indicators – as in many countries, the set building standards have not been sufficient to achieve the targets.

The Figure 4 below presents an example of building stock energy demand analysis. The first graph shows the specific energy needs for heating per gross floor area (kWh/m2a) for different building typologies, characterized by the building use and the building construction period – building stock status in the year 2012. The second to fourth graphs below show the resulting specific energy needs (and their ranges) according to different refurbishment depths, for the year 2035. The depth of the refurbishment can be seen by the different ranges of specific energy needs – refurbishment type 3 is the most ambitious one. The analysis below suggests the (specific) energy needs as possible metrics to whole building indicator. Moreover, the graphs provided possible values and their ranges that could be used as targeted values in the recommendations.



Figure 4: Building stock model analysis. Source: Invert-EE/Lab ("Invert/EE-Lab," 2021)

### **1.3 Countries' implementation**

The proposed method will be implemented in a spread sheet. Additionally, a country specific interface between the national EPC software (as .xml-file format or other machine readable format) and the X-tendo spread sheet can be implemented. The objective of this interface is to automatically read the EPC data required in the calculation. An automatised interface will be demonstrated between xml-Files of Danish EPCs and the X-tendo spread sheet.

In general, the approach should be elaborated in a way to be commonly applied for all implementing countries, and in the future replicated to EU MSs. Table 3 below shows the country specific implementation of the proposed methodology:

|                                                                                        | Denmark                                                                                                                                                       | Poland                                                                                  | Scotland                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enhanced measure-<br>by-measure<br>recommendations                                     |                                                                                                                                                               | Target building<br>standards will be set<br>according to Polish<br>building regulations |                                                                                                                                                                              |
| Enhanced measure-<br>by-measure<br>recommendations<br>including economic<br>assessment | Target building<br>standards will be set<br>according to Danish<br>building regulations.<br>Cost data will be<br>defined according to<br>actual market values |                                                                                         | Target building<br>standards will be set<br>according to UK<br>building regulations.<br>Cost data will be<br>gathered from<br>internal tools, such<br>as Insight & Analytics |

#### Table 3: Summary of X-tendo activity per implementing country

To validate the method proposed, following activities are foreseen: 1) apply the developed approaches on NAPE's EPC recommendations database and compare the results; and 2) test in planned X-tendo in-building testing activities.

D4.4\_Description of methodologies and concepts regarding improved X-tendoy handling and use of EPC data

## REFERENCES

DIN V 18599-2, 2011. Teil2\_Nutzenergiebedarf für Heizen und Kühlen von Gebäudezonen.pdf.

DIN V 18599-9, 2011. 2011\_Teil 9\_ End- und Primärenergiebedarf von stromproduzierenden Anlagen.pdf.

Invert/EE-Lab [WWW Document], 2021. URL https://invert.at/ (accessed 6.28.20).

ÖNORM B 8110-4:2011 07 15 - Lesesaal - Austrian Standards [WWW Document], 2011. URL https://lesesaal.austrian-

standards.at/action/de/private/details/396775/OENORM\_B\_8110-4\_2011\_07\_15 (accessed 4.6.21).

## **ANNEX I – PRE FABRICATED RECOMMENDATIONS**

#### Number

1

2

5

Benefit

Decrease heating energy demand: every degree lower room temperature saves heating energy. Usually 20 to 22 C° is sufficient in living rooms, 18 to 20 C° in the kitchen, 23 C° in the bathroom and 16 to 18 C° in the bedroom.

Decrease heating energy demand and increase indoor air quality: tilted windows provide constant fresh air. However they also cool down the air. Correct ventilation should be provided 2 to 3 times a day for about 4 to 5 minutes, with open windows and doors in all rooms. This ensures the necessary air exchange.

Decrease heating energy demand by keeping radiators free: Prevent furniture, curtains and 3 curtains in front of radiators so the heat can spread evenly throughout the room.

Decrease heating energy demand and increase thermal comfort with automatic regulation: programmable thermostats ensure more comfort and less heating energy consumption. This allows rooms to be heated according to the use of the room, and end-user presence.

4

Decrease heating energy demand and increase indoor air quality with efficiency radiators: if radiators do not warm up properly even though the thermostat is fully turned on, it causes a waste of energy. By using regular valves energy savings can be provided.

Decrease heating energy demand and increase indoor air quality by cleaning the radiator 6 regularly. Dust has an insulating effect and reduces the efficiency of the radiator.

Decrease heating energy demand: install insulation panels behind radiators. An insulation layer behind the radiator reduces the heat loss via the outer wall. Attention: check

7 regularly whether moisture is forming between the panel and the wall.

Decrease heating energy demand: windows insulation by using sealing tape can provide 8 high energy savings with lower investments costs.

Decrease heating energy demand: keep blinds and curtains closed at night to prevent heat 9 from escaping the room on cold nights.

## ANNEX II – RULES FIRST THRESHOLD CHECK (PER COUNTRY)

| Greece                                        |                                                                        |
|-----------------------------------------------|------------------------------------------------------------------------|
| Variable Name                                 | Rule                                                                   |
| Climate zone                                  | In the range [1;4]                                                     |
| U-value external wall                         | Greater than 0                                                         |
| U-value roof                                  | Greater than 0                                                         |
| U-value door                                  | Greater than 0                                                         |
| U-value floor against ground                  | Greater than 0                                                         |
| Surface area external wall                    | Greater than 0                                                         |
| Surface area roof                             | Greater than 0                                                         |
| Surface area door                             | Greater than 0                                                         |
| Surface area floor against ground             | Greater than 0                                                         |
| Surface area window                           | Greater than 0                                                         |
| Window glazing U-value                        | Greater than 0                                                         |
| Window g-Value                                | Greater than 0                                                         |
| Sun protection (Shading)                      | Greater than 0                                                         |
| Heat Efficiency                               | Greater than 0                                                         |
| Cooling Efficiency                            | Greater than 0                                                         |
| Lighting                                      | Greater than 0                                                         |
| Building use                                  | In the range [1;60]                                                    |
| Reason                                        | In the range [1;19] or Equals 99                                       |
| Suggestions                                   | If the energy class is C or worse, at least one suggestion is required |
| Primary Energy For Heating                    | Greater than 0                                                         |
| Primary Energy For Cooling                    | Greater than 0                                                         |
| Primary Energy For Lighting                   | Greater than 0                                                         |
| Primary Energy Consumption                    | Smaller than 5000                                                      |
| Reference Building Primary Energy Consumption | Smaller than 5000                                                      |
| CO2 emmissions                                | Greater than 0                                                         |
| Gross building area                           | Greater than 0                                                         |
| Useful building area                          | Greater than 0 and less than or equal to Gross building area           |

| Useful building volume               | Greater than 0                                                                                                                                                                                            |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Heated area                          | Greater than 0 and less than or equal to Gross building area                                                                                                                                              |
| Cooled area                          | Greater than 0 and less than or equal to Gross building area                                                                                                                                              |
| Heating days                         | In the range [1;364]                                                                                                                                                                                      |
| Climate region                       | In the range [1;4]                                                                                                                                                                                        |
| Windows orientation                  | In the range [1;359]                                                                                                                                                                                      |
| Ventilation system type              | Is not null                                                                                                                                                                                               |
| Mechanical ventilation system exists | In the range [0;1]                                                                                                                                                                                        |
| Heating energy source                | Element of ["LPG", "Natural Gas", "Electricity",<br>"Heating Diesel oil", "Transport Diesel oil",<br>"Distrinct Heating (PPC)", "Distrinct Heating<br>(Renewable)", "Biomass", "Standardized<br>Biomass"] |
| Reference heating energy needs       | Greater than 0                                                                                                                                                                                            |
| Building's heating energy needs      | Greater than 0                                                                                                                                                                                            |
| Domestic hot water energy needs      | Greater than 0                                                                                                                                                                                            |
| Useful heating energy (dhw)          | Greater than 0                                                                                                                                                                                            |
| Useful electricity demand            | Greater than 0                                                                                                                                                                                            |
| Primary energy demand                | Greater than 0                                                                                                                                                                                            |
| Carbon dioxid emission               | Greater than 0                                                                                                                                                                                            |

## Italy

| Variable Name                         | Rule                        |
|---------------------------------------|-----------------------------|
| Cadatral identification of buildig ID | Is not null                 |
| User profile (name or code)           | In the range [0;14]         |
| Statistical code of the Region        | In the string range [01;22] |
| Regional ID of the EPC                | Is not null                 |
| Heated area                           | Greater than 0              |
| Cooled area                           | Greater than 0              |
| Heated bruto-volume                   | Greater than 0              |
| Cooled bruto-volume                   | Greater than 0              |

1

٦

| Building envelope area (heat loss area)                | Greater than 0                                                  |
|--------------------------------------------------------|-----------------------------------------------------------------|
| Compactness (based on heat loss area)                  | Greater than 0                                                  |
| Heat degree days                                       | Complex table-based check                                       |
| Climate region                                         | Complex table-based check                                       |
| Yie-value periodic thermal transmittance               | Greater than 0                                                  |
| Equivalent solar Area/net heated area Ratio            | Greater than or equal to 0                                      |
| Mechanical ventilation system exists                   | Boolean value                                                   |
| Building structure                                     | In the range [0;14]                                             |
| Heating energy sources                                 | In the range [0;15] if Space heating service exists             |
| Cooling energy sources                                 | In the range [0;15] if Space heating service exists             |
| Energy demand for each energy source                   | Greater than 0                                                  |
| EPhnd,lim -> indicator                                 | Greater than 0                                                  |
| Building's heating energy needs                        | Greater than 0                                                  |
| Reference Global primary energy demand (not renewable) | Greater than 0                                                  |
| Global primary energy demand (not renewable)           | Greater than or equal to 0                                      |
| Global primary energy demand (renewable)               | Greater than or equal to 0                                      |
| Global carbon dioxid emission                          | Greater than 0                                                  |
| Exported eletrical energy (for example: PV)            | Greater than or equal to 0 or null                              |
| Primary energy demand (not renewable)                  | Complex table-based check                                       |
| Space heating service exists                           | True                                                            |
| Heating primary energy demand (not renewable)          | Greater than or equal to 0                                      |
| Heating primary energy demand (renewable)              | Greater than or equal to 0                                      |
| Heating system efficiency                              | Greater than 0                                                  |
| Space cooling service exists                           | Boolean value                                                   |
| Cooling primary energy demand (not renewable)          | If Space cooling service exists then Greater than or equal to 0 |
| Cooling primary energy demand (renewable)              | If Space cooling service exists then Greater than or equal to 0 |
| Cooling system efficiency                              | If Space cooling service exists then Greater than to 0          |
| DHW service exists                                     | True if user profile equals 0 or 2                              |

Г

# D4.4\_Description of methodologies and concepts regarding improved X-tendoy handling and use of EPC data

-

| DHW primary energy demand (not renewable)       | If DHW service exists then Greater than or equal to 0                   |
|-------------------------------------------------|-------------------------------------------------------------------------|
| DHW primary energy demand (renewable)           | If DHW service exists then Greater than or equal to 0                   |
| DHW system efficiency                           | If DHW service exists then Greater than 0                               |
| Mech Vent primary energy demand (not renewable) | If Mechanical_Ventilation System Exists then Greater than or equal to 0 |
| Mech Vent primary energy demand (renewable)     | If Mechanical_Ventilation System Exists then Greater than or equal to 0 |
| Mech Vent system efficiency                     | If Mechanical_Ventilation System Exists then Greater than 0             |
| Lightning is considered                         | Boolean value                                                           |
| Lighting primary energy demand (not renewable)  | If Lightning is considered then Greater than or equal to 0              |
| Lighting primary energy demand (renewable)      | If Lightning is considered then Greater than or equal to 0              |
| Lighting system efficiency                      | If Lightning is considered then Greater than 0                          |
| Transport systems are considered/exist          | Boolean value                                                           |
| Transport primary energy demand (not renewable) | If Transport systems are considered then Greater than or equal to 0     |
| Transport primary energy demand (renewable)     | If Transport systems are considered then Greater than or equal to 0     |
| Transport system efficiency                     | If Transport systems are considered then Greater than 0                 |



## **ANNEX III – CLUSTER PARAMETERS (PER COUNTRY)**

### Greece

Building uses

Residential single family houses Residential multifamily houses Hotels of continuous yearly operation Hotels of intermittent operation – summer Primary education schools Secondary education schools Higher education buildings Hospitals Offices

Climate zones

| А |  |
|---|--|
| В |  |
| С |  |
| D |  |

Construction period

| 1 | Before 1980 | no any insulation regulations in force                               |
|---|-------------|----------------------------------------------------------------------|
| 2 | 1980-2010   | 1st Building Insulation<br>Regulation                                |
| 3 | 2010-todate | 2010-Transposition of EPBD<br>& 1st Energy Performance<br>Regulation |

Renovation period

| 1 | No renovation |
|---|---------------|
| 2 | 2010-2017     |
| 3 | after 2017    |

## Italy

Building uses

| 1 | Residential                                   |
|---|-----------------------------------------------|
| 2 | Office buildings                              |
| 3 | Commercial buildings                          |
| 4 | Buildings for industrial and craft activities |
| 5 | Other not residential                         |

Building constructions period

| 1 | Before 1945 |
|---|-------------|
| 2 | 1945-1976   |
| 3 | 1977-1991   |
| 4 | 1992-2005   |
| 5 | 2006-2015   |
| 6 | From 2016   |

Climate zone

| 1 | A+B (<= 900 HDD)    |
|---|---------------------|
| 2 | C (901<=HDD<=1400)  |
| 3 | D (1401<=HDD<=2100) |
| 4 | E (2101<=HDD<=3000) |
| 5 | F (HDD>= 3001)      |

## ANNEX IV – PARAMETERS SECOND THRESHOLD CHECK (PER COUNTRY)

#### Greece

| Envelope characteristics                   | Unit / comment |
|--------------------------------------------|----------------|
| U-value external wall                      | W/m2K          |
| U-value roof                               | W/m2K          |
| U-value floor against ground               | W/m2K          |
| U-value floor on pilotis                   | W/m2K          |
| U-value windows                            | W/m2K          |
| Energy consumption class                   |                |
| Total Primary Energy Consumption           | kWh/m2         |
| HVAC Systems Data                          |                |
| Heating System Efficiency                  | SCOP           |
| Cooling System Efficiency                  | SEER           |
| Mechanical Ventilation system (air supply) | m3/h           |
| Solar Collector Area                       | m2             |
| Energy Consumption Indicators              |                |
| Total final Energy Consumption             | kWh/m2         |
| Energy Consumption for Heating (final)     | kWh/m2         |
| Energy Consumption for Cooling (final)     | kWh/m2         |
| Energy Consumption for Lighting ** (final) | kWh/m2         |
| Energy Consumption for DHW (final          | kWh/m2         |

\*\* only for non-residential

## Italy

| Building characteristics                                                                                         | Unit / comments |
|------------------------------------------------------------------------------------------------------------------|-----------------|
| compactness                                                                                                      | 1/m             |
| yie-value periodic thermal transmittance                                                                         | W/m2K           |
| Equivalent solar Area/net heated area Ratio                                                                      | [-]             |
| Specific energy demand indicators                                                                                |                 |
| building's heating energy needs                                                                                  | kWh/m²a         |
| Global primary energy demand (not renewable)                                                                     | kWh/m²a         |
| Global primary energy demand (renewable)                                                                         | kWh/m²a         |
| Global carbon dioxid emission                                                                                    | kg/m²a          |
| Specific energy demand indicators                                                                                |                 |
| Heating primary energy demand (not renewable)                                                                    | kWh/m²a         |
| DHW primary energy demand (not renewable)                                                                        | kWh/m²a         |
| Dimensionless energy indicators                                                                                  |                 |
| Heating primary energy demand (not<br>renewable)/building's heating energy needs ratio                           | [-]             |
| Reachable global primary energy demand (not<br>renewable)/ Global primary energy demand (not<br>renewable) ratio | [-]             |



eXTENDing the energy performance assessment and certification schemes via a mOdular approach



TECHNISCHE UNIVERSITÄT Vienna | Austria













Agência para a Energia

adene















This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 845958.